
1

2

تعزيز أبحاث الذكاء الاصطناع - رند يآ مركز

 اسم البحث:
ن الحلول الخوارزمية الكمية التقريبية لتحسي

A Quantum Approximate Optimization Algorithm

 إعداد الفريق العلم :

(رندي)آ بمركز أبحاث الذكاء الاصطناع
اف المهندس الحج عبدلله بن إبراهيم : إشر

12/16/2024 تاري خ التقرير:

11/14/2014 تاري خ البحث:

3

 اختار مركز أبحاث الذكاء الاصطناعي)أيرند(هذا البحث ليقدم تلخيصاً عنه يبرز أهميته ويقربه للباحثين

، (QAOA) الخوارزمية الكمية التقريبية لتحسين الحلولقدم هذا البحث خوارزمية كمية مبتكرة تعُرف باسم

والتي تهدف إلى إيجاد حلول تقريبية للمشكلات التوافقية المعقدة. تعتمد هذه الخوارزمية على دوائر كمية ذات

 .عمق محدد يتم التحكم فيها باستخدام مجموعة من الزوايا والمعاملات

في الدائرة الكمية، مما يجعلها قابلة pتظُهر الخوارزمية أداءً قوياً في تحسين دقة الحلول مع زيادة عدد المراحل

، مع تحقيق نتائج دقيقة حتى في الحالات التي MaxCutللتطبيق على نطاق واسع من مشكلات التحسين مثل

 .تكون فيها الموارد الحسابية محدودة

 :النقاط الرئيسية في البحث

 :QAOA أ(مفهوم

 يةتعتمد الخوارزمية على تنفيذ تسلسل من العمليات الكم:

o U(C, γ): عملية تعتمد على الهدف (Objective Function) الذي يتم تحسينه.

o U(B, β): عملية تؤثر على جميع البتات باستخدام الحقول المغناطيسية.

 يتم تطبيق هذه العمليات بشكل متناوب على الحالة الأولية للحصول على حالة كمية تعكس الحل الأمثل أو

 .القريب من الأمثل

 :MaxCut لتطبيقات على مشكلةب(ا

 تسُتخدم الخوارزمية لحل مشكلةMaxCut التي تهدف إلى تقسيم العقد في الرسم البياني إلى ،

 .مجموعتين بحيث يتم قطع أكبر عدد من الحواف

 عند تطبيق الخوارزمية على رسوم بيانية ثلاثية الدرجة (3-Regular Graphs) ،أظهرت نتائج واعدة ،

 .p = 1من الحل الأمثل عندما يكون 0.6924حيث حققت نسبة تقريب تبلغ

 :ج(مرونة الخوارزمية

 يمكن زيادة عمق الدائرة الكمية(p) لتحسين جودة الحلول.

 إذا كانت قيمةp ثابتة، يتم استخدام خوارزميات كلاسيكية مسبقة لتحديد الزوايا المثلى قبل تشغيل

 .الخوارزمية الكمية

 :أهمية البحث

 :أ(تحسين الحلول الكمية

 تظُهر الخوارزمية قدرتها على تقديم حلول دقيقة للمشكلات التوافقية التي يصعب حلها باستخدام

 .الخوارزميات التقليدية

 :ب(تقليل الموارد المطلوبة

 عند استخدام قيم صغيرة لـpفاءة دون الحاجة إلى فحص جميع الحلول ، تقدم الخوارزمية حلولاً عالية الك

 .الممكنة

4

 :ج(تطوير الحوسبة الكمية

 يعُزز هذا البحث من فهمنا لقدرات الحوسبة الكمية في تحسين الحلول التوافقية، مع فتح آفاق جديدة

 .لتطبيقات أوسع

 :التطبيقات المحتملة

 :أ(تحسين الشبكات

 حل مشكلات تحسين الرسوم البيانية مثل MaxCut وMaxSat.

 :ب(الذكاء الاصطناعي

 تحسين خوارزميات التعلم الآلي التي تتطلب حلولاً توافقية.

 :ج(الأنظمة الصناعية

 تطبيق الخوارزمية في مجالات مثل الجدولة وتحليل الشبكات.

 :القيود والتحديات

 :أ(تعقيد العمليات الكمية

 تزداد الموارد المطلوبة مع زيادة قيمةp ،مما يتطلب تحسين تقنيات الحوسبة الكمية.

 :ب(التعميم على أنواع مختلفة من الرسوم البيانية

 قد تواجه الخوارزمية تحديات عند تطبيقها على رسوم بيانية غير منتظمة.

 :ج(الحاجة إلى تحسين الكفاءة التشغيلية

 تحسين أداء الخوارزمية على أنظمة الحوسبة الكمية الحالية.

: البحث

ن الحلول الخوارزمية الكمية التقريبية لتحسي

Tags:

#AI #Quantum_Computing #QAOA #Optimization #MaxCut #Quantum_Algorithms

#Artificial_Intelligence #Research #Airnd_Center

 :كلمات مفتاحية

 #تحسين_الحلول آيرند# QAOA# الذكاء_الاصطناعي #الحوسبة_الكمية #الخوارزميات_الكمية#

 #مركز_أبحاث_الذكاء_الاصطناعي

5

MIT-CTP/4610

A Quantum Approximate Optimization Algorithm

Edward Farhi and Jeffrey Goldstone

Center for Theoretical Physics

Massachusetts Institute of Technology

Cambridge, MA 02139

Sam Gutmann

Abstract

We introduce a quantum algorithm that produces approximate solutions for combinatorial op-

timization problems. The algorithm depends on an integer p ≥ 1 and the quality of the approx-

imation improves as p is increased. The quantum circuit that implements the algorithm consists

of unitary gates whose locality is at most the locality of the objective function whose optimum is

sought. The depth of the circuit grows linearly with p times (at worst) the number of constraints.

If p is fixed, that is, independent of the input size, the algorithm makes use of efficient classical pre-

processing. If p grows with the input size a different strategy is proposed. We study the algorithm

as applied to MaxCut on regular graphs and analyze its performance on 2-regular and 3-regular

graphs for fixed p. For p = 1, on 3-regular graphs the quantum algorithm always finds a cut that

is at least 0.6924 times the size of the optimal cut.

ar
X

iv
:1

4
1
1

.4
0
2

8
v
1

[q

u
an

t-
p

h
]

1
4

 N
o

v
 2

0
1
4

6

Σ

Y

B =
Σ

σ . (3)

U (B, β) = e−iβB =
Y

e−iβσ

I. INTRODUCTION

Combinatorial optimization problems are specified by n bits and m clauses. Each clause

is a constraint on a subset of the bits which is satisfied for certain assignments of those bits and

unsatisfied for the other assignments. The objective function, defined on n bit strings, is the

number of satisfied clauses,

m

C(z) = Cα(z) (1)
α=1

where z = z1z2 . . . zn is the bit string and Cα(z) = 1 if z satisfies clause α and 0 otherwise.

Typically Cα depends on only a few of the n bits. Satisfiability asks if there is a string

that satisfies every clause. MaxSat asks for a string that maximizes the objective function.

Approximate optimization asks for a string z for which C(z) is close to the maximum of C. In

this paper we present a general quantum algorithm for approximate optimization. We study

its performance in special cases of MaxCut and also propose an alternate form of the

algorithm geared toward finding a large independent set of vertices of a graph.

The quantum computer works in a 2n dimensional Hilbert space with computational basis

vectors |z⟩ , and we view (1) as an operator which is diagonal in the computational basis.

Define a unitary operator U (C, γ) which depends on an angle γ,

m

U (C, γ) = e−iγC = e−iγCα . (2)
α=1

All of the terms in this product commute because they are diagonal in the computational

basis and each term’s locality is the locality of the clause α. Because C has integer eigen-

values we can restrict γ to lie between 0 and 2π. Define the operator B which is the sum of

all single bit σx operators,
n

x
j

j=1

Now define the β dependent product of commuting one bit operators

n
x
j

(4)

j=1

where β runs from 0 to π. The initial state |s⟩ will be the uniform superposition over

computational basis states:
 1

|s⟩ = √
2n

|z⟩ . (5)
z

Σ

7

For any integer p ≥ 1 and 2p angles γ1 . . . γp ≡ γ and β1 . . . βp ≡ β we define the angle

dependent quantum state:

|γ, β⟩ = U (B, βp) U (C, γp) · · · U (B, β1) U (C, γ1) |s⟩ . (6)

Even without taking advantage of the structure of the instance, this state can be produced

by a quantum circuit of depth at most mp + p. Let Fp be the expectation of C in this state

Fp(γ, β) = ⟨ γ, β| C |γ, β⟩ . (7)

and let Mp be the maximum of Fp over the angles,

Mp = max Fp (γ, β). (8)
γ,β

Note that the maximization at p − 1 can be viewed as a constrained maximization at p so

Mp ≥ Mp−1. (9)

Furthermore we will later show that

lim Mp = max C(z). (10)
p→∞ z

These results suggest a way to design an algorithm. Pick a p and start with a set of angles

(γ, β) that somehow make Fp as large as possible. Use the quantum computer to get the

state |γ, β⟩ . Measure in the computational basis to get a string z and evaluate C(z). Repeat

with the same angles. Enough repetitions will produce a string z with C(z) very near or

greater than Fp(γ, β). The rub is that it is not obvious in advance how to pick good angles.

If p doesn’t grow with n, one possibility is to run the quantum computer with angles

(γ, β) chosen from a fine grid on the compact set [0, 2π]p × [0, π]p, moving through the grid

to find the maximum of Fp. Since the partial derivatives of Fp(γ, β) in (7) are bounded by

O(m2 + mn) this search will efficiently produce a string z for which C(z) is close to Mp or

larger. However we show in the next section that if p does not grow with n and each bit

is involved in no more than a fixed number of clauses, then there is an efficient classical

calculation that determines the angles that maximize Fp. These angles are then used to run

the quantum computer to produce the state |γ, β⟩ which is measured in the computational

basis to get a string z. The mean of C(z) for strings obtained in this way is Mp.

8

Σ

Σ

II. FIXED p ALGORITHM

We now explain how for fixed p we can do classical preprocessing and determine the

angles γ and β that maximize Fp(γ, β). This approach will work more generally but we

illustrate it for a specific problem, MaxCut for graphs with bounded degree. The input is a

graph with n vertices and an edge set {⟨ jk⟩ } of size m. The goal is to find a string z that

makes

where

C = C⟨ jk⟩ , (11)
⟨ jk⟩

C =
1

−σzσz + 1

, (12)
⟨ jk⟩ 2 j k

as large as possible. Now

Fp(γ, β) = ⟨ s| U †(C, γ1) · · · U †(B, βp) C⟨ jk⟩ U (B, βp) · · · U (C, γ1) |s⟩ . (13)

⟨ jk⟩

Consider the operator associated with edge ⟨ jk⟩

U †(C, γ1) · · · U †(B, βp)C⟨ jk⟩ U (B, βp) · · · U (C, γ1). (14)

This operator only involves qubits j and k and those qubits whose distance on the graph

from j or k is less than or equal to p. To see this consider p = 1 where the previous expression

is

U †(C, γ1) U †(B, β1)C⟨ jk⟩ U (B, β1) U (C, γ1). (15)

The factors in the operator U (B, β1) which do not involve qubits j or k commute through

C⟨ jk⟩ and we get
† iβ1(σx+σx) −iβ1(σx+σx)

U (C, γ1) e j k

C⟨ jk⟩ e
j k U (C, γ1). (16)

Any factors in the operator U (C, γ1) which do not involve qubits j or k will commute through

and cancel out. So the operator in equation (16) only involves the edge ⟨ jk⟩ and edges

adjacent to ⟨ jk⟩ , and qubits on those edges. For any p we see that the operator in

(14) only involves edges at most p steps away from ⟨ jk⟩ and qubits on those edges.

Return to equation (13) and note that the state |s⟩ is the product of σx eigenstates

|s⟩ = |+⟩ 1 |+⟩ 2 . . . |+⟩ n (17)

9

Σ

j

Y

so each term in equation (13) depends only on the subgraph involving qubits j and k and

those at a distance no more than p away. These subgraphs each contain a number of qubits that

is independent of n (because the degree is bounded) and this allows us to evaluate Fp in

terms of quantum subsystems whose sizes are independent of n.

As an illustration consider MaxCut restricted to input graphs of fixed degree 3. For

p = 1, there are only these possible subgraphs for the edge ⟨ jk⟩ :

(18)

We will return to this case later.

For any subgraph G define the operator CG which is C restricted to G,

CG =
⟨ ℓℓ′⟩ ǫG

C⟨ ℓℓ′⟩ , (19)

and the associated operator

U (CG, γ) = e−iγ CG. (20)

Also define

BG =
Σ

σx

(21)

and

Let the state |s, G⟩
be

jǫG

U (BG, β) = e−iβBG . (22)

|s, G⟩ =
ℓǫG

|+⟩ ℓ .

Return to equation (13). Each edge ⟨ j, k⟩ in the sum is associated with a subgraph g(j,

k) and makes a contribution to Fp of

⟨ s, g(j, k)| U † (Cg(j,k), γp) · · · U †(Bg(j,k), β1)C⟨ jk⟩ U (Bg(j,k), β1) · · · U (Cg(j,k), γp) |s, g(j, k)⟩

1
0

(23)

The sum in (13) is over all edges, but if two edges ⟨ jk⟩ and ⟨ j′k′⟩ give rise to

isomorphic subgraphs, then the corresponding functions of (γ, β) are the same. Therefore

we can view

1
1

Σ

the sum in (13) as a sum over subgraph types. Define

fg (γ, β) = ⟨ s, g(j, k)| U †(Cg(j,k), γ1) · · · U †(Bg(j,k), βp)C⟨ jk⟩ U (Bg(j,x)βp) · · ·

U (Cg(j,k), γ1) |s, g(j, k)⟩ , (24)

where g(j, k) is a subgraph of type g. Fp is then

Fp (γ, β) = wg fg(γ, β) (25)
g

where wg is the number of occurrences of the subgraph g in the original edge sum. The functions

fg do not depend on n and m. The only dependence on n and m comes through the weights

wg and these are just read off the original graph. Note that the expectation in

(24) only involves the qubits in subgraph type g. The maximum number of qubits that can appear

in (23) comes when the subgraph is a tree. For a graph with maximum degree v, the numbers of

qubits in this tree is

qtree = 2
(v − 1)p+1 − 1

(v − 1) − 1
, (26)

(or 2p + 2 if v = 2), which is n and m independent. For each p there are only finitely many

subgraph types.

Using (24), Fp(γ, β) in (25) can be evaluated on a classical computer whose resources are

not growing with n. Each fg involves operators and states in a Hilbert space whose dimension

is at most 2qtree . Admittedly for large p this may be beyond current classical technology, but

the resource requirements do not grow with n.

To run the quantum algorithm we first find the (γ, β) that maximize Fp. The only dependence

on n and m is in the weights wg and these are easily evaluated. Given the best (γ, β) we turn

to the quantum computer and produce the state |γ, β⟩ given in equation

(6). We then measure in the computational basis and get a string z and evaluate C(z).

Repeating gives a sample of values of C(z) between 0 and +m whose mean is Fp(γ, β). An

outcome of at least Fp(γ, β) − 1 will be obtained with probability 1 − 1/m with order m

log m repetitions.

III. CONCENTRATION

Still using MaxCut on regular graphs as our example, it is useful to get information about

the spread of C measured in the state |γ, β⟩ . If v is fixed and p is fixed (or grows

1
2

Σ
"

2 2

m

(v − 1)2p+2 − 1

† †

2

slowly with n) the distribution of C(z) is actually concentrated near its mean. To see this,

calculate

⟨ γ, β| C |γ, β⟩ − ⟨ γ, β| C |γ, β⟩ (27)

= ⟨ s| U †(C, γ1) · · · U †(B, βp) C⟨ jk⟩ C⟨ j′k′⟩ U (B, βp) · · · U (C, γ1) |s⟩

⟨ jk⟩

⟨ j′k′⟩

— ⟨ s| U (C, γ1) · · · U (B, βp) C⟨ jk⟩ U (B, βp) · · · U (C, γ1) |s⟩

· ⟨ s| U †(C, γ1) · · · U †(B, βp) C⟨ j′k′⟩ U (B, βp) · · · U (C, γ1) |s⟩

#

.

(28)

If the subgraphs g(j, k) and g(j′, k′) do not involve any common qubits, the summand in

(28) will be 0. The subgraphs g(j, k) and g(j′, k′) will have no common qubits as long as

there is no path in the instance graph from ⟨ jk⟩ to ⟨ j′k′⟩ of length 2p + 1 or shorter.

From

(26) with p replaced by 2p + 1 we see that for each ⟨ jk⟩ there are at most

2
(v − 1) − 1

(29)

edges ⟨ j′k′⟩ which could contribute to the sum in (28) (or 4p + 4 if v = 2) and therefore

⟨ γ, β| C |γ, β⟩ − ⟨ γ, β| C |γ, β⟩
≤ 2

(v − 1)2p+2 − 1

(v − 1) − 1
· m (30)

since each summand is at most 1 in norm. For v and p fixed we see that the standard

deviation of C(z) is at most of order
√

m. This implies that the sample mean of order m2

values of C(z) will be within 1 of Fp(γ, β) with probability 1 − 1 . The concentration of

the distribution of C(z) also means that there is only a small probability that the algorithm

will produce strings with C(z) much bigger than Fp(γ, β).

IV. THE RING OF DISAGREES

We now analyze the performance of the quantum algorithm for MaxCut on 2-regular graphs.

Regular of degree 2 (and connected) means that the graph is a ring. The objective operator is

2

1
3

again given by equation (11) and its maximum is n or n−1 depending on whether n is even or

odd. We will analyze the algorithm for all p.

For any p (less than n/2), for each edge in the ring, the subgraph of vertices within p of

the edge is a segment of 2p + 2 connected vertices with the given edge in the middle. So for

1
4

each p there is only one type of subgraph, a line segment of 2p + 2 qubits and the weight

for this subgraph type is n. We numerically maximize the function given in (24) and we

find that for p = 1, 2, 3, 4, 5 and 6 the maxima are 3/4, 5/6, 7/8, 9/10, 11/12, and 13/14 to

13 decimal places from which we conclude that Mp = n(2p + 1)/(2p + 2) for all p. So the

quantum algorithm will find a cut of size n(2p + 1)/(2p + 2) − 1 or bigger. Since the best

cut is n, we see that our quantum algorithm can produce an approximation ratio that can

be made arbitrarily close to 1 by making p large enough, independent of n. For each p the

circuit depth can be made 3p by breaking the edge sum in C into two sums over ⟨ j, j +

1⟩ with j even and j odd. So this algorithm has a circuit depth independent of n.

V. MAXCUT ON 3-REGULAR GRAPHS

We now look at how the Quantum Approximate Optimization Algorithm, the QAOA,

performs on MaxCut on (connected) 3-regular graphs. The approximation ratio is C(z),

where z is the output of the quantum algorithm, divided by the maximum of C. We

first show that for p = 1, the worst case approximation ratio that the quantum algorithm

produces is 0.6924.

Suppose a 3-regular graph with n vertices (and accordingly 3n/2 edges) contains T “iso-

lated triangles” and S “crossed squares”, which are subgraphs of the form,

. (31)

The dotted lines indicate edges that leave the isolated triangle and the crossed square. To

say that the triangle is isolated is to say that the 3 edges that leave the triangle end on

distinct vertices. If the two edges that leave the crossed square are in fact the same edge,

then we have a 4 vertex disconnected 3-regular graph. For this special case (the only case

where the analysis below does not apply) the approximation ratio is actually higher than

0.6924. In general, 3T + 4S ≤ n because no isolated triangle and crossed square can share a

vertex.

Return to the edge sum in F1(γ, β) of equation (13). For each crossed square there is

1
5

 − S − T

1 g4 g5
2

g6

one edge ⟨ jk⟩ for which g(j, k) is the first type displayed in (18). Call this subgraph type g4

because it has 4 vertices. In each crossed square there are 4 edges that give rise to subgraphs

of the second type displayed in (18). We call this subgraph type g5 because it has 5 vertices.

All 3 of the edges in any isolated triangle have subgraph type g5, so there are 4S + 3T edges

with subgraph type g5. The remaining edges in the graph all have a subgraph type like the

third one displayed in (18) and we call this subgraph type g6. There are (3n/2 − 5S − 3T)

of these so we have

F (γ, β) = Sf (γ, β) + (4S + 3T) f (γ, β) +

3n

− 5S − 3T

f (γ, β) (32)

The maximum of F1 is a function of n, S, and T ,

M1(n, S, T) = max F1(γ, β). (33)

γ,β

Given any 3 regular graph it is straightforward to count S and T . Then using a classical

computer it is straightforward to calculate M1(n, S, T). Running a quantum computer with

the maximizing angles γ and β will produce the state |γ, β⟩ which is then measured in the

computational basis. With order n log n repetitions a string will be found whose cut value is

very near or larger than M1(n, S, T).

To get the approximation ratio we need to know the best cut that can be obtained for the

input graph. This is not just a function of S and T . However a graph with S crossed squares

and T isolated triangles must have at least one unsatisfied edge per crossed square and one

unsatisfied edge per isolated triangle so the number of satisfied edges is ≤ (3n/2 − S − T).

This means that for any graph characterized by n, S and T the quantum algorithm will

produce an approximation ratio that is at least

M1(n, S, T)
3n . (34)
2

It is convenient to scale out n from the top and bottom of (34). Note that M1/n which comes

from F1/n depends only on S/n ≡ s and T/n ≡ t. So we can write (34) as

M1(1, s, t)
 3

− s − t
 (35)

where s, t ≥ 0 and 4s + 3t ≤ 1. It is straightforward to numerically evaluate (35) and we find that

it achieves its minimum value at s = t = 0 and the value is 0.6924. So we know that on

any 3-regular graph, the QAOA will always produce a cut whose size is at least 0.6924

2

10

times the size of the optimal cut. This p = 1 result on 3-regular graphs is not as good as

known classical algorithms [1].

It is possible to analyze the performance of the QAOA for p = 2 on 3-regular graphs.

However it is more complicated then the p = 1 case and we will just show partial results.

The subgraph type with the most qubits is this tree with 14 vertices:

(36)

Numerically maximizing (24) with g given by (36) yields 0.7559. Consider a 3-regular

graph on n vertices with o(n) pentagons, squares and triangles. Then all but o(n) edges have

(36) as their subgraph type. The QAOA at p = 2 cannot detect whether the graph is bipartite,

that is, completely satisfiable, or contains many odd loops of length 7 or longer. If the graph

is bipartite the approximation ratio is 0.7559 in the limit of large n. If the graph contains

many odd loops (length 7 or more), the approximation ratio will be higher.

VI. RELATION TO THE QUANTUM ADIABATIC ALGORITHM

We are focused on finding a good approximate solution to an optimization problem

whereas the Quantum Adiabatic Algorithm, QAA [2], is designed to find the optimal solu-

tion and will do so if the run time is long enough. Consider the time dependent Hamiltonian H(t)

= (1 − t/T)B + (t/T)C. Note that the state |s⟩ is the highest energy eigenstate of B and

we are seeking a high energy eigenstate of C. Starting in |s⟩ we could run the quan- tum

adiabatic algorithm and if the run time T were long enough we would find the highest energy

eigenstate of C. Because B has only non-negative off-diagonal elements, the Perron- Frobenius

theorem implies that the difference in energies between the top state and the one below is

greater than 0 for all t < T , so for sufficiently large T success is assured. A Trot- terized

approximation to the evolution consists of an alternation of the operators U (C, γ) and U (B,

β) where the sum of the angles is the total run time. For a good approximation we want

each γ and β to be small and for success we want a long run time so together these

11

˜

force p to be large. In other words, we can always find a p and a set of angles γ, β that

make Fp(γ, β) as close to Mp as desired. With (9), this proves the assertion of (10).

The previous discussion shows that we can get a good approximate solution to an opti-

mization problem by making p sufficiently large, perhaps exponentially large in n. But the

QAA works by producing a state with a large overlap with the optimal string. In this sense

(10), although correct, may be misleading. In fact on the ring of disagrees the state pro-

duced at p = 1, which gives a 3/4 approximation ratio, has an exponentially small overlap

with the optimal strings.

We also know an example where the QAA fails and the QAOA succeeds. In this example

(actually a minimization) the objective function is symmetric in the n bits and therefore depends

only on the Hamming weight. The objective function is plotted in figure 1 of reference [3].

Since the beginning Hamiltonian is also symmetric the evolution takes place in a subspace of

dimension n + 1 with a basis of states |w⟩ indexed by the Hamming weight. The example can be

simulated and analyzed for large n. For subexponential run times, the QAA is trapped in a false

minimum at w = n. The QAOA can be similarly simulated and analyzed. For large n, even with

p = 1, there are values of γ1 and β1 such that the final state is concentrated near the true

minimum at w = 0.

The Quantum Approximate Optimization Algorithm has the key feature that as p in-

creases the approximation improves. We contrast this to the performance of the QAA. For

realizations of the QAA there is a total run time T that also appears in the instantaneous

Hamiltonian, H(t) = H̃ (t/T). We start in the ground state of H̃ (0) seeking the ground

state of H(1). As T goes to infinity the overlap of the evolved state with the desired state

goes to 1. However the success probability is generally not a monotonic function of T . See

figure 2 of reference [4] for an extreme example where the success probability is plotted as

a function of T for a particular 20 qubit instance of Max2Sat. The probability rises and then

drops dramatically, and the ultimate rise for large T is not seen for times that can be

reasonably simulated. It may well be advantageous in designing strategies for the QAOA to

use the fact that the approximation improves as p increases.

12

Σ

′
,
 1 : z and z′ differ in one bit

VII. A VARIANT OF THE ALGORITHM

We are now going to give a variant of the basic algorithm which is suited to situations where

the search space is a complicated subset of the n bit strings. We work with an example that

illustrates the basic idea. Consider the problem of finding a large independent set in a given

graph of n vertices. An independent set is a subset of the vertices with the property that no

two vertices in the subset have an edge between them. With the vertices labeled 1 to n, a

subset of the vertices corresponds to the string z = z1z2 . . . zn with each bit being 1 if the

corresponding vertex is in the subset and the bit is 0 if the vertex is not. We restrict to

strings which correspond to independent sets in the graph. The size of the independent set

is the Hamming weight of the string z which we denote by C(z),

n

C(z) = zj, (37)
j=1

and the goal is to find a string z that makes C(z) large.

The Hilbert space for our quantum algorithm has an orthonormal basis |z⟩ where z is any

string corresponding to an independent set. In cases of interest, the Hilbert space dimension

is exponentially large in n, though not as big as 2n. The Hilbert space is not a simple tensor

product of qubits. The operator C is associated with the γ dependent unitary

U (C, γ) = e−iγC (38)

where γ lies between 0 and 2π because C has integer eigenvalues. We define the quantum

operator B that connects the basis states:

⟨ z|B|z ⟩ =
, 0 : otherwise .

(39)

Note that B is the adjacency matrix of the hypercube restricted to the legal strings, that is,

those that correspond to independent sets in the given graph. Now, in general, B does not

have integer eigenvalues so we define

U (B, b) = e−ibB (40)

where b is a real number.

13

T T 2

T T 2

For the starting state of our algorithm we take the easy to construct state |z = 0⟩ corre-

sponding to the empty independent set which has the minimum value of C. For p ≥ 1, we

have p real numbers b1, b2 . . . bp ≡ b and p − 1 angles γ1, γ2, .γp−1 ≡ γ. The quantum state

|b, γ⟩ = U (B, bp)U (C, γp−1) · · · U (B, b1)|z = 0⟩ (41)

is what we get after the application of an alternation of the operators associated with B and

C. Now we can define

Fp(b, γ) = ⟨ b, γ|C|b, γ⟩ (42)

as the expectation of C in the state |b, γ⟩ . And finally we define the maximum,

Mp = max Fp(b, γ). (43)

b,γ

The maximization at p − 1 is the maximization at p with bp = 0 and γp−1 = 0 so we have

Mp ≥ Mp−1. (44)

Furthermore,

lim Mp = max C(z). (45)
p→∞ z legal

To see why (45) is true note that the initial state is the ground state of C, which we view

as the state with the maximum eigenvalue of −C. We are trying to reach a state which is an

eigenstate of +C with maximum eigenvalue. There is an adiabatic path (which stays at the

top of the spectrum throughout) with run time T that achieves this as T goes to infinity. This

path has two parts. In the first we interpolate between the beginning Hamiltonian −C

and the Hamiltonian B,

H(t) =

1 −
2t

(−C) +
2t

B , 0 ≤ t ≤
T

(46)

We evolve the initial state with this Hamiltonian for time T/2 ending arbitrarily close to

the top state of B. Next we interpolate between the Hamiltonian B and the Hamiltonian
+C,

H(t) =

2 −
2t

B +

2t

− 1

C ,
T

≤ t ≤ T (47)

evolving the quantum state just produced from time t = T/2 to t = T . As in section VI,

using the Perron-Frobenius Theorem, the Adiabatic Theorem and Trotterization we get the

result given in (45).

14

Together (41) through (45) suggest a quantum subroutine for an independent set algo-

rithm. For a given p and a given (b, γ) produce the quantum state |b, γ⟩ of (41). Measure

in the computational basis to get a string z which labels an independent set whose size is

the Hamming weight of z. Repeat with the same (b, γ) to get an estimate of Fp(b, γ) in

(42). This subroutine can be called by a program whose goal is to get close to Mp given by

(43). This enveloping program can be designed using either the methods outlined in this

paper or novel techniques.

For p = 1, the subroutine can be thought of as evolving the initial state |z = 0⟩ with

the Hamlitonian B for a time b. B is the adjacency matrix of a big graph whose vertices

correspond to the independent sets of the input graph and whose edges can be read off (39).

We view this as a continuous time quantum walk entering the big graph at a particular vertex

[5]. In the extreme case where the input graph has no edges, all strings of length n represent

independent sets so the Hilbert space dimension is 2n. In this case B is the adjacency matrix

of the hypercube, realizable as in (3). Setting b = π/2, the state (41) (with p = 1 there is

only one unitary) is |z = 11 . . . 11⟩ which maximizes the objective function. In the more

general case we can view (41) as a succession of quantum walks punctuated by applications

of C dependent unitaries which aid the walk in achieving its objective. The algorithm of

the previous sections can also be viewed this way although the starting state is not a single

vertex.

VIII. CONCLUSION

We introduced a quantum algorithm for approximate combinatorial optimization that

depends on an integer parameter p. The input is an n bit instance with an objective function

C that is the sum of m local terms. The goal is to find a string z for which C(z) is close to

C’s global maximum. In the basic algorithm, each call to the quantum computer uses a set

of 2p angles (γ, β) and produces the state

|γ, β⟩ = U (B, βp) U (C, γp) · · · U (B, β1) U (C, γ1) |s⟩ . (48)

This is followed by a measurement in the computational basis yielding a string z with an

associated value C(z). Repeated calls to the quantum computer will yield a good estimate

15

of

Fp(γ, β) = ⟨ γ, β| C |γ, β⟩ . (49)

Running the algorithm requires a strategy for a picking a sequence of sets of angles with the goal

of making Fp as big as possible. We give several possible strategies for finding a good set of

angles.

In section II we focused on fixed p and the case where each bit is in no more than a fixed

number of clauses. In this case there is an efficient classical algorithm that determines the

best set of angles which is then fed to the quantum computer. Here the quantum computer

is run with only the best set of angles. Note that the “efficient” classical algorithm which

evaluates (25) using (24) could require space doubly exponential in p.

An alternative to using a classical preprocessor to find the best angles is to make repeated

calls to the quantum computer with different sets of angles. One strategy, when p does not

grow with n is to put a fine grid on the compact set [0, 2π]p × [0, π]p where the number of

points is only polynomial in n and m. This works because the function Fp does not have peaks

that are so narrow that they are not seen by the grid.

The QAOA can be run on a quantum computer with p growing with n as long as there is a

strategy for choosing sets of angles. Perhaps for some combinatorial optimization problem,

good angles can be discovered in advance. Or the quantum computer can be called to

evaluate Fp(γ, β), the expectation of C in the state |γ, β⟩ . This call can be used as a

subroutine by a classical algorithm that seeks the maximum of the smooth function Fp(γ, β).

We hope that either p fixed or growing slowly with n will be enough to have this quantum

algorithm be of use in finding solutions to combinatorial search problems beyond what

classical algorithms can achieve.

IX. ACKNOWLEDGEMENTS

This work was supported by the US Army Research Laboratory’s Army Research Office

through grant number W911NF-12-1-0486, and the National Science Foundation through grant

number CCF-121-8176. The authors thank Elizabeth Crosson for discussion and help in

preparing the manuscript. We also thank Cedric Lin and Han-Hsuan Lin for their help. EF

would like to thank the Google Quantum Artificial Intelligence Lab for discussion and

16

support.

[1] Eran Halperin, Dror Livnat, Uri Zwick.

MAX CUT in cubic graphs, 2004.

Journal of Algorithms, Volume 53 Issue 2, Pages 169-185.

[2] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael Sipser.

Quantum computation by adiabatic evolution, 2000.

arXiv:quant-ph/0001106.

[3] Edward Farhi, Jeffrey Goldstone, Sam Gutmann.

Quantum Adiabatic Evolution Algorithms versus Simulated Annealing, 2002.

arXiv:quant-ph/0201031.

[4] Elizabeth Crosson, Edward Farhi, Cedric Yen-Yu Lin, Han-Hsuan Lin, Peter Shor.

Different strategies for optimization with the quantum adiabatic algorithm, 2014.

arXiv:1401.7320 [quant-ph].

[5] Edward Farhi, Sam Gutmann.

Quantum Computation and Decision Trees, 1997.

Phys. Rev. A 58, 915 arXiv:quant-ph/9706062.

http://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/quant-ph/0201031
http://arxiv.org/abs/1401.7320
http://arxiv.org/abs/quant-ph/9706062

	النقاط الرئيسية في البحث:
	أ) مفهوم QAOA:
	ب) التطبيقات على مشكلة MaxCut:
	ج) مرونة الخوارزمية:

	أهمية البحث:
	أ) تحسين الحلول الكمية:
	ب) تقليل الموارد المطلوبة:
	ج) تطوير الحوسبة الكمية:

	التطبيقات المحتملة:
	أ) تحسين الشبكات:
	ب) الذكاء الاصطناعي:
	ج) الأنظمة الصناعية:

	القيود والتحديات:
	أ) تعقيد العمليات الكمية:
	ب) التعميم على أنواع مختلفة من الرسوم البيانية:
	ج) الحاجة إلى تحسين الكفاءة التشغيلية:

